Pirólisis: una revisión de conceptos y aplicaciones en la gestión de residuos sólidos
DOI:
https://doi.org/10.25127/aps.20221.854Keywords:
biocarbón, pirolisis, residuos sólidos orgánicos municipales, aplicaciones de biocarbónAbstract
La gestión de residuos sólidos es un desafío ambiental a nivel mundial debido a que generan contaminación de aguas y suelos, así como emisiones de gas de efecto invernadero, lo cual se incrementará con el crecimiento de las ciudades y población. Es por ello, que el tratamiento de estos, especialmente la fracción orgánica, mediante el proceso de pirólisis se presenta como una alternativa sostenible con beneficios significativos como la obtención de subproductos, como el biocarbón, que tiene diversos campos de aplicación en aguas, suelos y cambio climático. En esta revisión, se explora en la primera sección los procesos de pirólisis, materia prima y subproductos. En la siguiente sección se analizan las aplicaciones del biocarbón, como subproducto, en el tratamiento de agua, suelo y reducción de gases de efecto invernadero. Finalmente, realiza una análisis técnico, económico y ambiental del proceso pirolítico. Por ende, la gestión de la fracción orgánica de residuos sólidos municipales a través de pirólisis, es un proceso sostenible, rentable y replicable.
Downloads
References
Afzal, M. Z., X. F. Sun, J. Liu, C. Song, S. G. Wan y , A. Javed. 2018. “Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads”. Science of the Total Environment 639 (1): 560-569. DOI: 10.1016/j.scitotenv.2018.05.129
Amin, F. R., Y. Huang, Y. He, R. Zhang, G. Liu y C. Chen. 2016. “Biochar applications and modern techniques for characterization”. Clean Technologies and Environmental Policy 18 (2016): 1457-1473. 10.1016/j.chemosphere.2013.10.071
Ahmad, J., F. Patuzzi, U. Rashid, M. Shahabz, C. Ngamcharussrivichai y M. Baratieri. 2021. “Exploring untapped effect of process conditions on biochar characteristics and applications”. Environmental Technology & Innovation 21 (1): 101-310. DOI: 10.1016/j.eti.2020.101310
Alam, O. y X. Qiao. 2020. “An in-depth review on municipal solid waste management, treatment and disposal in Bangladesh”. Sustainable Cities and Society 52 (2): 101-775. DOI: 10.1016/j.scs.2019.101775
Alonos- Gómez, L., A. Cruz, D. Jiménez, Á. Ocampo y S. Parra. 2016.” Biochar como enmienda en un oxisol y su efecto en el crecimiento de maíz”. Revista UDCA Actualidad & Divulgación Científica 19 (2): 341-349.
Amoah-Antwi, C.J., J. Kwiatkowska, SF. Thornton, O. Fenton, G. Malina y E. Szara. 2020. “Restoration of soil quality using biochar and brown coal waste: A review”. Science of the Total Environment 722 (1): 137-852. DOI: 10.1016/j.scitotenv.2020.137852
Asadullah, M., 2014 “Biomass gasification gas cleaning for downstream applications: Acomparative critical review”. Renewable and Sustainable Energy Reviews 40 (1):118–132. DOI: 10.1016/j.rser.2014.07.132
Asadullah, M., S.I. Ito, K. Kunimori, M. Yamada y K. Tomishige,. 2020. “Biomass Gasification to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-Bed Reactor”. Journal of Catalysis 208 (2): 255–259.DOI: 10.1006/jcat.2002.3575
Aslam Z., M. Khalid and M. Aon. 2014. “Impact of Biochar on Soil Physical Properties”. Scholarly Journal of Agricultural Science 4 (5): 280-284.
Babu, R., P. Veramendi y E.R. Rene. 2021. “Strategies for resource recovery from the organic fraction of municipal solid waste”. Case Studies in Chemical and Environmental Engineering 3 (1): 100098. DOI: 10.1016/j.cscee.2021.100098
Barrow, C.J. 2012. “Biochar: Potential for countering land degradation and for improving agriculture”. Applied Geography 34 (2): 21–28. DOI: 10.1016/j.apgeog.2011.09.008
Ben Hassen-Trabelsi, A., T. Kraiem, S. Naoui y H. Belayouni.“Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char”. Waste Management, 34.1(2014):210–218.
Bergman, P. C. A., A. Boersma, R. Zwart y J.H.A. Kiel. 2005. “Torrefaction for biomass co-firing in existing coal-fired power stations”. In Energy research Centre of the Netherlands 1 (1): 17-21.
Biederman, L.A. y W.S. Harpole. 2006. “Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis”. GCB Bioenergy 5(1): 202-214. DOI: 10.1111/gcbb.12037
Brick, S. 2010. “Biochar: Assessing the promise and risks to guide U.S. policy”. Natural Resources Defense Council. USA. 1(1):1-24.
Cantrell, K. B., P.G. Hunt, M. Uchimiya, J.M. Novak y K.S. Ro. 2012. “Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar”. Bioresource Technology 107(1): 419–428. DOI: 10.1016/j.biortech.2011.11.084
Ccahua, K. 2018. “Aplicación de Biochar en Mezclas y Sustratos”. Readlyc.org 1 (1): 1-12. DOI: 10.22517/23447214.17691
Chandrappa, R. y D.B. Das. 2012. Solid waste management: Principles and practice. Springer Science & Business Media. 11(6): 393-411. DOI: 10.1007/978-3-642-28681-0
Chen, D., L. Yin, H. Wang and P. He. 2014. “Pyrolysis technologies for municipal solid waste: A review”. Waste Management 34 (12): 2466–2486. DOI: 10.1016/j.wasman.2014.08.004
Dehkhoda, A.M., A.H. West, y N. Ellis. 2010. “Biochar based solid acid catalyst for biodiesel production”. Applied Catalysis. A General 382 (2):197–204. DOI: 10.1016/j.apcata.2010.04.051
Dunnigan, L., B. J. Morton, P. J. Ashman, X. Zhang y C. W. Kwong, 2018. “Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes”. Waste Management 77 (1): 59-66.DOI: 10.1016/j.wasman.2018.05.004
Ennis C., A. G. Evans, M. Islam, T. K. Ralebitso and E. Senior.2012. “Biochar: Carbon Sequestration, Land Remediation, and Impacts on Soil Microbiology”. Critical Reviews in Environmental Science and Technology 42 (22): 2311-2364.DOI: 10.1080/10643389.2011.574115
Escalante, A., G. Pérez, C. Hidalgo, J.López, J. Campo, E. Valtierra y J. D. Etchevers 2016. “Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo”. Terra Latinoamericana 34 (3): 367-382.
FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) .2015. Los suelos sanos son la base para la producción de alimentos saludables. https://www.fao.org/soils-2015/news/news-detail/es/c/277721/ (Consultada el 24 de noviembre 2021)
Fiallos-Ortega, L. R., L.G. Flores, N. Duchi, C.I. Flores, A. Baño y L. Estrada. 2015.“Restauración ecológica del suelo aplicando biochar (carbón vegetal), y su efecto en la producción de Medicago sativa”. Ciencia y Agricultura 12 (2): 13-20. DOI: 10.19053/01228420.4349
Funke, A. y F. Ziegler. 2010. “Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering”. Biofuels, Bioproducts and Biorefining, 4 (2): 160–177. DOI: 10.1002/bbb.198
García, A. M., I. Santé, X. Loureiro and D. Miranda. 2020. “Green infrastructure spatial planning considering ecosystem services assessment and trade-off analysis. Application at landscape scale in Galicia region (NW Spain)”. Ecosystem Services 43 (1): 101115. DOI: 10.1016/j.ecoser.2020.101115
Gautam, R. K., M. Goswami, R.K. Mishra, P. Chaturvedi, M.K. Awashthi, R.S. Singh, B.S. Giri y A. Pandey. 2021. “Biochar for remediation of agrochemicals and synthetic organic dyes from environmental samples: A review”. Chemosphere 272 (1): 129917. DOI: 10.1016/j.chemosphere.2021.129917
González, J. F., S. Román, J. M. Encinar y G. Martínez. 2009.“Pyrolysis of various biomass residues and char utilization for the production of activated carbons”. Journal of Analytical and Applied Pyrolysis 85 (1-2):134–141. DOI: 10.1016/j.jaap.2008.11.035
Ghodake, G. S., S. K.Shinde, A.A. Kadam, R.C. Saratale, G.D. Saratale, M. Kumar, R.R. Palem, H.A. AL-Shwaiman, A.M. Elgorban, A. Syed y D.Y. Kim. 2021. “Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy”. Journal of Cleaner Production 297: 126645. DOI: 10.1016/j.jclepro.2021.126645
Grycová, B., I. Koutník. y A. Pryszcz. 2016. “Pyrolysis process for the treatment of food waste”. Bioresource Technology 218: 1203–1207.DOI: 10.1016/j.biortech.2016.07.064
Gu, X., Y. Wang, C. Lai, J. Qiu, S. Li, Y. Hou, W. Martens, N. Mahmood y S. Zhang. 2015.“Microporous bamboo biochar for lithium-sulfur batteries”. Nano Research, 8(1):129–139.
Han, J., X. Wang, J. Yue, S. Gao y G. Xu. 2014. “Catalytic upgrading of coal pyrolysis tar overchar-based catalysts”. Fuel Processing Technolog, 122: 98–106. DOI: 10.1016/j.fuproc.2014.01.033
Hasan, M. M., M.G. Rasul, M.M.K. Khan, N. Ashwath y M.I. Jahirul. 2021.“Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments”. Renewable and Sustainable Energy Reviews 145: 111073. DOI: 10.1016/j.rser.2021.111073
Huggins, T., H. Wang, J. Kearns y P. Jenkins. 2014. “Ren.Biochar as a sustainable electrode material for electricity production in microbial fuel cells”. Bioresource Technology 157(1):114–119. DOI: tps://doi.org/10.1016/j.biortech.2014.01.058
Huggins, T.M., J.J. Pietron, H. Wang, Z.J. Ren y J.C. Biffinger. 2015. “Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells”. Bioresource Technology, 195(1): 147–153. DOI: 10.1016/j.biortech.2015.06.012
Hungria, M., M. Nogueira y R. Araujo. 2016. “Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics”. Agriculture Ecosystems & Environment 221:125-131. DOI: 10.1016/j.agee.2016.01.024
Ippolito, J.A., M.E. Stromberger, R.D. Lentz y R.S. Dungan.2016. “Hardwood biochar and manure co-application to a calcareous soil”. Chemosphere 142 (2): 84–91.DOI: 10.1016/j.chemosphere.2015.05.039
Jafri, N., W.Y. Wong, V. Doshi, L.W. Yoon y K.H. Cheah. 2018.“A review on production and characterization of biochars for application in direct carbon fuel cells”. Process Safety and Environmental Protection 118 (1): 152–166. DOI: 10.1016/j.psep.2018.06.036
Jayawardhana, Y., S.R.Gunatilake, K. Mahatantila, M.P. Ginige y M. Vithanage. 2019. “Sorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compounds”. Journal of Environmental Management 238 (1): 323–330.DOI: 10.1016/j.jenvman.2019.02.097
Jayawardhana, Y., S.S. Mayakaduwa, P. Kumarathilaka, S. Gamage, y M.Vithanage. “Municipal solid waste-derived biochar for the removal of benzene from landfill leachate”. Environmental Geochemistry and Health 41 (4): 1739–1753.
Kataki, R., N.J. Bordoloi, R. Saikia, D. Sut, R. Narzari, L. Gogoi y N. Bhuyan. 2018.“Waste Valorization to Fuel and Chemicals Through Pyrolysis: Technology, Feedstock, Products and Economic Analysis”. Energy, Environment, and Sustainability 1(3): 477–514.
Kaza, S., L. Yao, P. Bhada y F. Woerden. 2018. “What a waste 2.0: una instantánea global de la gestión de residuos sólidos hasta 2050”. Publicaciones del Banco Mundial 6 (2): 219-305. DOI: 10.1596/978-1-4648-1329-0
Klinghoffer, N. B., M. J. Castaldi y A. Nzihou. 2015. “Influence of char composition and inorganics on catalytic activity of char from biomass gasification”. Fuel, 157 (2):37–47. DOI: 10.1016/j.fuel.2015.04.036
Ro, K. S., I.M. Lima, G. B. Reddy y M. A Jackson.2015. “Removing Gaseous NH3 Using Biochar as an Adsorbent”. Agriculture 5 (4): 991–1002. DOI: 10.3390/agriculture5040991
Laird, D. A., R. C. Brown J. E. Amonette and J. Lehmann. 2009. “Review of the pyrolysis platform for coproducing bio-oil and biochar”. Biofuels, Bioproducts and Biorefining, 3 (5):547-562. DOI: 10.1002/bbb.169
Lal, R. 2004. “Soil carbon sequestration impact on global climate change and good security”. Science, 304 (5): 1623-1627. DOI: DOI: 10.1126/science.1097396
Lee, J., A.K. Sarmah y E. E. Kwon. 2018.“Production and formation of biochar”. Biochar from Biomass and Waste: Fundamentals and Applications 1 (1) :3–18. DOI: ttps://doi.org/10.1016/B978-0-12-811729-3.00001-7
Lee, J. W., B. Hawkins, D.M. Day y D.C. Reicosky. 2010. “Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration”. Energy & Environmental Science 3 (11):1695-1705. DOI: 10.1039/C004561F
Lehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W. Hockaday y D. Crowley. 2011. “Biochar effects on soil biota – A review”. Soil Biology and Biochemistry 43 (9):1812-1836. DOI: 10.1016/j.soilbio.2011.04.022
Li, A. M., X. D. Li, S.Q. Li, Y. Ren, Y. Chi, J.H. Yan y K.F. Cen. 1999. “Pyrolysis of solid waste in a rotary kiln: Influence of final pyrolysis temperature on the pyrolysis products”. Journal of Analytical and Applied Pyrolysis 50 (2):149–162. DOI: 10.1016/S0165-2370(99)00025-X
Li, L., Yao., You, S., Wang, C., Chong y X. Wang. 2019. “Optimal design of negative emission hybrid renewable energy systems with biochar production”. Applied Energy, 243 (2): 233-249. DOI: 10.1016/j.apenergy.2019.03.183
Li, S., A. Sanna y J.M. Andresen. 2011. “Influence of temperature on pyrolysis of recycled organic matter from municipal solid waste using an activated olivine fluidized bed”. Fuel Processing Technology 92 (9): 1776–1782. DOI: 10.1016/j.fuproc.2011.04.026
Li, Z., Q. Tang, T., Katsumi, X. Tang, T. Inui, S. Imaizumi. 2010. “Leaf char: An alternative adsorbent for Cr (III)”. Desalination 264 (1-2):70–77. DOI: 10.1016/j.desal.2010.07.006
Liu, H., X. Ma, L. Li, Z.F. Hu, P. Guo y Y.Jiang. 2014. “The catalytic pyrolysis of food waste by microwave heating”. Bioresource Technology 166 (3):45–50. DOI: 10.1016/j.biortech.2014.05.020
Lu, J. S., Y. Chang, C.S. Poon, D. J. Lee. 2020. “Slow pyrolysis of municipal solid waste (MSW): A review”. Bioresource Technology, 312 (2020): 123615.DOI: 10.1016/j.biortech.2020.123615
Mani, S., J.R. y Kastner, A. Juneja. 2013.“Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Processing Technology 114: 118–125.DOI: 10.1016/j.fuproc.2013.03.015
Masiello CA and E.R.M. Druffel. 1998. “Black carbon in deep-Sea sediments”. Science. 280 (2):1911-3. DOI: 10.1126/ciencia.280.5371.1911
Mohan, D., S. Rajput, V.K. Singh, P.H, Steele y C.U. Pittman. 2011. “Modeling and evaluation of chromium remediation from water using low-cost bio-char, a green adsorbent”. Journal of Hazardous Material, 188 (1-3): 319–333. DOI: 10.1016/j.jhazmat.2011.01.127
Nunoura, T., S.R. Wade, J.P. Bourke y M.J. Antal.2005. “Studies of the Flash Carbonization Process. 1. Propagation of the Flaming Pyrolysis Reaction and Performance of a Catalytic Afterburner”. Industrial and Engineering Chemistry Research, 45 (2):585–599. DOI: 10.1021/ie050854y
Opatokun, S. A., T. Kan, A. Al Shoaibi, C.Srinivasakannan y V. Strezov. 2016. “Characterization of Food Waste and Its Digestate as Feedstock for Thermochemical Processing”. Energy and Fuels, 30,3(2016):1589–1597.DOI: 10.1021/acs.energyfuels.5b02183
Opatokun, S. A., V. Strezov y T. Kan. 2015. “Product based evaluation of pyrolysis of food waste and its digestate”. Energy 92:349–354. DOI: 10.1016/j.energy.2015.02.098
Pariona-Palomino, J., W. Matos y E. Huillca. 2020. “Biochar como tecnología de emisión negativa frente al cambio climático”. South Sustainability, 1 (2): 1-8. DOI: 10.21142/SS-0102-2020-014
Park, C., N. Lee, J. Kim y J. Lee. “Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions”. Environmental Pollution 270 (1):116045. DOI: 10.1016/j.envpol.2020.116045
Penido, E. S., G.C. Martins, T. B. M. Mendes, L. C. A.,Melo, I. do Rosário Guimarães y L. R. G. Guilherme.2019. “Combining biochar and sewage sludge for immobilization of heavy metals in mining soils”. Ecotoxicology and Environmental Safety, 172 (1): 326–333. DOI: 10.1016/j.ecoenv.2019.01.110
Renner, R. 2007. “Rethinking biochar”. Environment Science and Technology 41 (1): 5932-5933.
Sakhiya, A. K., A. Anand y P. Kaushal.2020. “Production, activation, and applications of biochar in recent times”. Biochar 2 (3): 253-285.
Shah, A. V., V.K. Srivastava, S.S. Mohanty y S. Varjani. 2021. “Municipal solid waste as a sustainable resource for energy production: State-of-the-art review”. Journal of Environmental Chemical Engineering 9 (4): 105717. DOI: 10.1016/j.jece.2021.105717
Schmidt, M.W.I y A.G. Noack. 2000. “Black Carbon in Soils and Sediments: Analysis, Distribution, Implications, and Current Challenges”. Global Biogeochemical Cycles, 14 (3):777-793. DOI: 10.1029/1999GB001208
Serio, M., E. Kroo, E. Florczak, M. Wójtowicz, K. Wignarajah, J. Hogan y J. Fisher.2008. “Pyrolysis of mixed solid food, paper, and packaging wastes”. SAE Technical Papers, 724 (2): 1-8.
Smith, P. 2016. “Soil carbon sequestration and biochar as negative emission technologies”. Global Change Biology 22 (3): 1315-1324. DOI: 10.1111/gcb.13178
Sipra, A. T., N. Gao y H. Sarwar. 2018. “Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts”. Fuel Processing Technology 175 :131–147.DOI: 10.1016/j.fuproc.2018.02.012
Sohi, S.P., E. Krull, E. Lopez y R. Bol. 2010. “Chapter 2 - A Review of Biochar and Its Use and Function in Soil”. Advances in Agronomy. 105 (1): 47–82. 10.1016/S0065-2113(10)05002-9.
Tang, Y., M.S. Alam, K.O. Konhauser, D.S. Alessi, S. Xu, W.J. Tian y Y. Liu. 2019. “Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater”. Journal of Cleaner Production 209: 927–936. 10.1016/j.jclepro.2018.10.268
Trupiano, D., C. Cocozza, S. Baronti, C. Amendola, F. P. Vaccari, G. Lustrato, S. Di Lonardo, F. Fantasma, R. Tognetti y G. S. Scippa. 2017. “The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance”. International. Journal of Agronomy 2017 (1):1-12. 10.1155/2017/3158207
Vu, N.-T., T.H. Ngo, T.T. Nguyen y K.U. Do. 2021. “Performances of coffee husk biochar addition in a lab-scale SBR system for treating low carbon/nitrogen ratio wastewater”. Biomass Conversion and Biorefinery, 1-10.
Wang B., B. Gao y J. Fang. 2018. “Recent advances in engineered biochar productions and applications”. Critical Reviews in Environmental Science and Technology 47 (22): 2158 – 2207 DOI: 10.1080/10643389.2017.1418580
Wang, X., J. Ming, C.M. Chen, B.A. Yoza, Q.W. Li, J.H. Liang, G.M. Gadd y Q. H. Wang. 2020 “Rapid aerobic granulation using biochar for the treatment of petroleum refinery wastewater”. Petroleum Science 17 (5):1411–1421.
Wainaina, S., M.K. Awasthi, S. Sarsaiya, H. Chen, E. Singh, A. Kumar, B. Ravindran, S.K. Awasthi, T. Liu, Y. Duan, S. Kumar, Z. Zhang y M.J. Taherzadeh.2020. “Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies”. Bioresource Technology 301: 122778. DOI: 10.1016/j.biortech.2020.122778
Woolf, D., J.E. Amonette, F.A. Street-Perrott, J. Lehmann y S. Joseph. 2021. “Sustainable biochar to mitigate global climate change”. Nature Communications 1 (1): 1-9.
Xu, F., X. Ming, R. Jia, M. Zhao, B. Wang, Y. Qiao y Y. Tian.2020. “Effects of operating parameters on products yield and volatiles composition during fast pyrolysis of food waste in the presence of hydrogen”. Fuel Processing Technology 210 (2): 106558. DOI: 10.1016/j.fuproc.2020.106558
Yaashikaa, P. R., P.S. Kumar, S. Varjani y A. Saravanan. 2020. “A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy”. Biotechnology Reports 28: e00570. DOI: 10.1016/j.btre. 2020.e00570
Yang, Y., S. Heaven, N. Venetsaneas C.J. Banks y A.V. Bridgwater.2018. “Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion”. Applied Energy, 213 (3), 158–168. DOI: 10.1016/j.apenergy.2018.01.018
Yang, Q., O. Mašek, L. Zhao, H. Nan, S. Yu, J. Yin y X. Cao. 2021. “Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation”. Applied Energy 282 (2): 116275. DOI: 10.1016/j.apenergy.2020.116275
Yang, X., A.D. Igalavithana, S.E. Oh, H. Nam, M. Zhang, C.H. Wang, E.E. Kwon, D.C. Tsang y Y. S Ok. 2018. “Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil”. Science of the Total Environment 640–641 (1):704–713. DOI: 10.1016/j.scitotenv.2018.05.298
Yao, H., J. Lu, J. Wu, Z. Lu, P.C. Wilson y Y. Shen. 2013. “Adsorption of Fluoroquinolone Antibiotics by Wastewater Sludge Biochar: Role of the Sludge Source”. Water, Air, & Soil Pollution 224 (1): 1-9.
Yuan, J.-H., R.K. Xu, N. Wang y J.Y. Li. 2011. “Amendment of Acid Soils with Crop Residues and Biochars”. Pedosphere 21(3):302–308.DOI: 10.1016/S1002-0160(11)60130-6
Yuan, Y., T. Liu, P. Fu, J. Tang y S. Zhou. 2015. “Conversion of sewage sludge into highperformance bifunctional electrode materials for microbial energy harvesting”. Journal of Materials Chemistry A 3 (16): 8475–8482.
Zhang, C., L. Liu, M. Zhao, H. Rong y Y. Xu. 2018. “The environmental characteristics and applications of biochar”. Environmental Science and Pollution Research 25 (22): 21525-21534.
Zhang, H., C. Chen, E. Gray, S. Boyd, H. Yang y D. Zhang. 2016. “Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus”. Geoderma. 276 (3): 1-6. DOI: 10.1016/j.geoderma.2016.04.020
Zhao, L., X. Cao, O. Mašek y A. Zimmerman. 2013. “Heterogeneity of biochar properties as a function of feedstock sources and production temperatures”. Journal of Hazardous Materials 256–257 (1):1–9. DOI: 10.1016/j.jhazmat.2013.04.015
Zheng, H., Z. Wang, X. Deng, S. Herbert y B. Xiang. 2013.“Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil”. Geoderma 206 (1) :32-39 .DOI: 10.1016/j.geoderma.2013.04.018
Zhou, Y., S. Qin, S. Verma, T. Sar, S. Sarsaiya, B. Ravindran, T. Liu, R. Sindhu, A.K. Patel, P. Binod, S. Varjani, R. Rani Singhnia, Z. Zhang y M.K. Awasthi. 2021. “Production and beneficial impact of biochar for environmental application: A comprehensive review”. Bioresource Technology 337 (1): 125451.DOI: 10.1016/j.biortech.2021.125451
Zenero M.D.O., S.V. Novais, B. Balboni, G.F.C. Barrili, F.D. Andreote y C.E.P. Cerri. 2021.“Short-term biochar effects on greenhouse gas emissions and phosphorus availability for maize”. Agrosystems Geosciences and Environment 4 (1) :1–16. DOI: 10.1002/agg2.20142
Downloads
Published
How to Cite
Issue
Section
License
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons. Por tanto:
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la lamisma licencia del original.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional