Tecnologías para el tratamiento de aguas con radiación solar para el desarrollo sustentable: Una Revisión
DOI:
https://doi.org/10.25127/aps.20203.671Palabras clave:
desinfección solar, nuevas tecnologías, fotocatálisis, calidad aguaResumen
La falta de tecnologías económicas y eficientes para el tratamiento de aguas es un problema global. Muchos investigadores buscan nuevas alternativas para el tratamiento de aguas que, reemplacen a las tecnologías tradicionales como la cloración, la filtración o la ebullición. Algunas de las tecnologías alternativas, son los que utilizan la radiación solar como los destiladores solares, el fotofenton o la desinfección solar (SODIS). Son tecnologías más económicas a comparación con las tradicionales, al utilizar la radiación solar como energía renovable, y por lo tanto el costo disminuye. Sin embargo, mediante estas tecnologías, no se pueden tratar grandes volúmenes de agua, como es el caso del SODIS que pueden tratar eficiente mente bajos volúmenes de agua mediante el uso botellas de politereftalato de etileno (PET). En el intento de mejorar las tecnologías basados en radiación solar se han creado algunas como las bolsas SODIS o los colectores solares con espejos parabólicos, también llamados concentradores parabólicos compuestos (CPC). Aun así, también presentan una serie de inconvenientes. En el caso de las bolsas SODIS, dan un mal olor al agua tratada, mientras que, en el caso de los CPC el costo de su implementación es más elevado. Como una alternativa económica a todo esto, surgió la fotocatálisis que usa normalmente el Óxido de Titanio (TiO2) como fotocatalizador. Con ello se reducen los tiempos de exposición mediante reacciones redox, lo que hace que métodos como el SODIS sean más eficientes.Descargas
Citas
Aguado, J., R. Van Grieken, M. J. López-Muñoz, y J. Marugán. 2002. “Removal of Cyanides in Wastewater by Supported TiO2-Based Photocatalysts”. Catalysis Today 75: 95–102. DOI: 10.1016/S0920-5861(02)00049-4
Ahmed, S. N., y W. Haider. 2018. “Heterogeneous Photocatalysis and Its Potential Applications in Water and Wastewater Treatment: A Review”. Nanotechnology 29 (34). DOI: 10.1088/1361-6528/aac6ea
Alcaraz, L., I. García-Díaz, L. González, M. E. Rabanal, A. Urbieta, P. Fernández, y F. A. López. 2019. “New Photocatalytic Materials Obtained from the Recycling of Alkaline and Zn/C Spent Batteries”. Journal of Materials Research and Technology 8 (3): 2809–18. DOI: 10.1016/j.jmrt.2019.04.020
Asiimwe, J. K., B. Quilty, C. K. Muyanja, y K. G. McGuigan. 2013. “Field Comparison of Solar Water Disinfection (SODIS) Efficacy between Glass and Polyethylene Terephalate (PET) Plastic Bottles under Sub-Saharan Weather Conditions”. Journal of Water and Health 11 (4): 729–37. DOI: 10.2166/wh.2013.197
Baccioli, A., M. Antonelli, y U. Desideri. 2017. “Dynamic Modeling of a Solar ORC with Compound Parabolic Collectors : Annual Production and Comparison with Steady-State Simulation”. Energy Conversion and Management 148: 708–23. DOI:10.1016/j.enconman.2017.06.025
Borde, P., K. Elmusharaf, K. G. Mcguigan, y M. B. Keogh. 2016. “Community Challenges When Using Large Plastic Bottles for Solar Energy Disinfection of Water (SODIS)”. BMC Public Health 931: 1–8. DOI: 10.1186/s12889-016-3535-6.
Bratby, J. 2016. Coagulation and Flocculation in Water and Wastewater Treatment. Londres (Reino Unido): IWA Publishing.
Byrne, C., G. Subramanian, y S. C. Pillai. 2018. “Recent Advances in Photocatalysis for Environmental Applications”. Journal of Environmental Chemical Engineering 6 (3): 3531–55. DOI: 10.1016/j.jece.2017.07.080
Byrne, J. Anthony, P. A. Fernandez-Ibañez, P. S. M. Dunlop, D. M. A. Alrousan, y J. W. J. Hamilton. 2011. “Photocatalytic Enhancement for Solar Disinfection of Water: A Review”. International Journal of Photoenergy 2011: 798051. DOI: 10.1155/2011/798051
Carratalà, A., A. D. Calado, M. J. Mattle, R. Meierhofer, S. Luzi, y T. Kohn. 2016. “Solar Disinfection of Viruses in Polyethylene Terephthalate Bottles”. Applied and Environmental Microbiology 82 (1): 279–88. DOI: 10.1128/AEM.02897-15
Castro-Alférez, M., M. I. Polo-López, J. Marugán, y P. Fernández-Ibáñez. 2018. “Validation of a Solar-Thermal Water Disinfection Model for Escherichia Coli Inactivation in Pilot Scale Solar Reactors and Real Conditions”. Chemical Engineering Journal 331: 831–40. DOI: 10.1016/j.cej.2017.09.015
Chong, M. N., B. Jin, C. W. K. Chow, y C. Saint. 2010. “Recent Developments in Photocatalytic Water Treatment Technology: A Review”. Water Research 44 (10): 2997–3027. DOI: 10.1016/j.watres.2010.02.039
Cioccolanti, L., S. R. Hamedani, y M. Villarini. 2019. “Environmental and Energy Assessment of a Small-Scale Solar Organic Rankine Cycle Trigeneration System Based on Compound Parabolic Collectors”. Energy Conversion and Management 198 (May): 111829. DOI: 10.1016/j.enconman.2019.111829
Clasen, T., L. Haller, D. Walker, J. Bartram, y S. Cairncross. 2007. “Cost-Effectiveness of Water Quality Interventions for Preventing Diarrhoeal Disease in Developing Countries”. Journal of Water and Health 5 (4): 599–608. DOI: 10.2166/wh.2007.010
Cowie, B. E., V. Porley, y N. Robertson. 2020. “Solar Disinfection (SODIS) Provides a Much Underexploited Opportunity for Researchers in Photocatalytic Water Treatment (PWT)”. ACS Catalysis 10 (20): 11779–82. DOI: 10.1021/acscatal.0c03325
Czech, B., P. Zygmunt, Z. C. Kadirova, K. Yubuta, y M. Hojamberdiev. 2020. “Effective Photocatalytic Removal of Selected Pharmaceuticals and Personal Care Products by Elsmoreite/Tungsten Oxide@ZnS Photocatalyst”. Journal of Environmental Management 270 (5): 110870. DOI: 10.1016/j.jenvman.2020.110870
Davididou, K., E. Hale, N. Lane, E. Chatzisymeon, A. Pichavant, y J. F. Hochepied. 2017. “Photocatalytic Treatment of Saccharin and Bisphenol-A in the Presence of TiO2 Nanocomposites Tuned by Sn(IV)”. Catalysis Today 287: 3–9. DOI: 10.1016/j.cattod.2017.01.038
Dunlop, P. S. M., A. Galdi, T. A. McMurray, J. W. J. Hamilton, L. Rizzo, y J. A. Byrne. 2010. “Comparison of Photocatalytic Activities of Commercial Titanium Dioxide Powders Immobilised on Glass Substrates”. Journal of Advanced Oxidation Technologies 13 (1): 99–106. DOI: 10.1515/jaots-2010-0113
Elbar, A. R. A., y H. Hassan. 2020. “Enhancement of Hybrid Solar Desalination System Composed of Solar Panel and Solar Still by Using Porous Material and Saline Water Preheating”. Solar Energy 204 (2): 382–94. DOI: 10.1016/j.solener.2020.04.058
Endo-Kimura, M., B. Karabiyik, K. Wang, Z. Wei, B. Ohtani, A. Markowska-Szczupak, y E. Kowalska. 2020. “Vis-Responsive Copper-Modified Titania for Decomposition of Organic Compounds and Microorganisms”. Catalysts 10 (10): 1–27. DOI: 10.3390/catal10101194
Fagan, R., D. E. McCormack, D. D. Dionysiou, y S. C. Pillai. 2016. “A Review of Solar and Visible Light Active TiO2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern”. Materials Science in Semiconductor Processing 42: 2–14. DOI: 10.1016/j.mssp.2015.07.052
Fernández, P., J. Blanco, C. Sichel, y S. Malato. 2005. “Water Disinfection by Solar Photocatalysis Using Compound Parabolic Collectors”. Catalysis Today 101 (3-4): 345–52. DOI: 10.1016/j.cattod.2005.03.062
Filella, M. 2020. “Antimony and PET Bottles: Checking Facts”. Chemosphere 261: 127732. DOI: 10.1016/j.chemosphere.2020.127732
Fiorenza, R., A. Di Mauro, M. Cantarella, C. Iaria, E. M. Scalisi, M. V. Brundo, A. Gulino, L. Spitaleri, G. Nicotra, S. Dattilo, S. C. Carroccio, V. Privitera, y G. Impellizzari. 2020. “Preferential Removal of Pesticides from Water by Molecular Imprinting on TiO2 Photocatalysts”. Chemical Engineering Journal 379 (6): 122309. DOI: 10.1016/j.cej.2019.122309
Fisher, M. B., M. Iriarte, y K. L. Nelson. 2011. “Solar Water Disinfection ( SODIS ) of Escherichia coli, Enterococcus spp., y MS2 Coliphage : Effects of Additives and Alternative Container Materials”. Water Research 46 (6): 1745–54. DOI: 10.1016/j.watres.2011.12.048
Foteinis, Spyros, y Efthalia Chatzisymeon. 2020. “Heterogeneous Photocatalysis for Water Purification. Nanostructured Photocatalysts”. En Nanostructured Photocatalysts From Materials to Applications in Solar Fuels and Environmental Remediation. Boukherroub, R., S. B. Ogale y N. Robertson (eds). Londres (Reino Unido): INC. DOI: 10.1016/b978-0-12-817836-2.00004-1
Friedmann, D., C. Mendive, y D. Bahnemann. 2010. “TiO2 for Water Treatment: Parameters Affecting the Kinetics and Mechanisms of Photocatalysis”. Applied Catalysis B: Environmental 99 (3–4): 398–406. DOI: 10.1016/j.apcatb.2010.05.014
Gar Alalm, M., M. Samy, S. Ookawara, y T. Ohno. 2018. “Immobilization of S-TiO2 on Reusable Aluminum Plates by Polysiloxane for Photocatalytic Degradation of 2,4-Dichlorophenol in Water”. Journal of Water Process Engineering 26 (11): 329–35. DOI: 10.1016/j.jwpe.2018.11.001
García-Gil, Á., C. Pablos, R. A. García-Muñoz, K. G. McGuigan, y J. Marugán. 2020. “Material Selection and Prediction of Solar Irradiance in Plastic Devices for Application of Solar Water Disinfection (SODIS) to Inactivate Viruses, Bacteria and Protozoa”. Science of the Total Environment 730: 139126. DOI: 10.1016/j.scitotenv.2020.139126
Gaya, U. I. , y A. H. Abdullah. 2008. “Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems”. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9 (1): 1–12. DOI: 10.1016/j.jphotochemrev.2007.12.003
Gazzeh, K. , y I. R. Abubakar. 2018. “Regional Disparity in Access to Basic Public Services in Saudi Arabia: A Sustainability Challenge”. Utilities Policy 52 (4): 70–80. DOI: 10.1016/j.jup.2018.04.008
Gil Pavas, E. 2002. “Fotocatálisis: Una Alternativa Viable Para La Eliminación de Compuestos Orgánicos”. Revista Universidad EAFIT 38 (127): 59–64.
Gligorovski, S., R. Strekowski, S. Barbati, y D. Vione. 2015. “Environmental Implications of Hydroxyl Radicals (-OH)”. Chemical Reviews 115 (24): 13051–13092. DOI: 10.1021/cr500310b
Gomes, J., A. Matos, M. Gmurek, R. M. Quinta-Ferreira, y R. C. Martins. 2019. “Ozone and Photocatalytic Processes for Pathogens Removal from Water: A Review”. Catalysts 9 (1): 1–23. DOI: 10.3390/catal9010046
Gómez-Couso, H., M. Fontán-Sainz, P. Fernández-Ibáñez, y E. Ares-Mazás. 2012. “Speeding up the Solar Water Disinfection Process (SODIS) against Cryptosporidium Parvum by Using 2.5l Static Solar Reactors Fitted with Compound Parabolic Concentrators (CPCs)”. Acta Tropica 124 (3): 235–42. DOI: 10.1016/j.actatropica.2012.08.018
Gutiérrez-Alfaro, S., A. Acevedo, M. Figueredo, M. Saladin, y M. A. Manzano. 2017. “Accelerating the Process of Solar Disinfection (SODIS) by Using Polymer Bags”. Journal of Chemical Technology and Biotechnology 92 (2): 298–304. DOI: 10.1002/jctb.5005
Haque, M. M., y M. Muneer. 2007. “Photodegradation of Norfloxacin in Aqueous Suspensions of Titanium Dioxide”. Journal of Hazardous Materials 145 (1–2): 51–57. DOI: 10.1016/j.jhazmat.2006.10.086
Hassan, M., Y. Zhao, y B. Xie. 2016. “Employing TiO2 Photocatalysis to Deal with Landfill Leachate: Current Status and Development”. Chemical Engineering Journal 285: 264–75. DOI: 10.1016/j.cej.2015.09.093
Hassanshahi, N., y A. Karimi-Jashni. 2018. “Comparison of Photo-Fenton, O3/H2O2/UV and Photocatalytic Processes for the Treatment of Gray Water”. Ecotoxicology and Environmental Safety 161 (6): 683–90. DOI: 10.1016/j.ecoenv.2018.06.039
Hincapié-Mejía, G. M., D. Ocampo, G. M. Restrepo, y J. M. Marín. 2011. “Fotocatálisis Heterogénea y Foto-Fenton Aplicadas Al Tratamiento de Aguas de Lavado de La Producción de Biodiesel”. Informacion Tecnologica 22 (2): 33–42. DOI: 10.4067/S0718-07642011000200005
Hitam, C. N. C., y A. A. Jalil. 2020. “A Review on Exploration of Fe2O3 Photocatalyst towards Degradation of Dyes and Organic Contaminants”. Journal of Environmental Management 258 (January): 110050. DOI: 10.1016/j.jenvman.2019.110050
Jain, R. 2012. “Providing Safe Drinking Water: A Challenge for Humanity”. Clean Technologies and Environmental Policy 14 (1): 1–4. DOI: 10.1007/s10098-011-0446-1
Jia, C., Y. Wang, C. Zhang, y Qiaoyan Qin. 2011. “UV-TiO2 Photocatalytic Degradation of Landfill Leachate”. Water, Air, and Soil Pollution 217 (1–4): 375–85. DOI: 10.1007/s11270-010-0594-7
Jin, Y, Y. Wang, Q. Huang, L. Zhu, Y. Cui, L. Cui, y C. Lin. 2017. “The Experimental Study of a Hybrid Solar Photo-Fenton and Photovoltaic System for Water Purification”. Energy Conversion and Management 135: 178–87. DOI: 10.1016/j.enconman.2016.12.073
K’oreje, K. Otieno, M. Okoth, H. Van Langenhove, y K. Demeestere. 2020. “Occurrence and Treatment of Contaminants of Emerging Concern in the African Aquatic Environment: Literature Review and a Look Ahead”. Journal of Environmental Management 254 (10): 109752. DOI: 10.1016/j.jenvman.2019.109752
Kato, R., T. Asami, E. Utagawa, H. Furumai, y H. Katayama. 2018. “Pepper Mild Mottle Virus as a Process Indicator at Drinking Water Treatment Plants Employing Coagulation-Sedimentation, Rapid Sand Filtration, Ozonation, y Biological Activated Carbon Treatments in Japan”. Water Research 132: 61–70. DOI: 10.1016/j.watres.2017.12.068
Keane, D. A., K. G. McGuigan, P. Fernández-Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, y S. C. Pillai. 2014. “Solar Photocatalysis for Water Disinfection: Materials and Reactor Design”. Catalysis Science and Technology 4 (5): 1211–26. DOI: 10.1039/c4cy00006d
Keogh, M. B., M. Castro-Alférez, M. I. Polo-López, I. Fernández-Calderero, Y. A. Al-Eryani, C. Joseph-Titus, B. Sawant, R. Dhodapkar, C. Mathur, K. G. McGuigan, P. Fernández-Ibáñez. 2015. “Capability of 19-L Polycarbonate Plastic Water Cooler Containers for Efficient Solar Water Disinfection (SODIS): Field Case Studies in India, Bahrain and Spain”. Solar Energy 116: 1–11. DOI: 10.1016/j.solener.2015.03.035
Kim, J. , Y. Chung, D. Shin, M. Kim, Y. Lee, Y. Lim, y D. Lee. 2003. “Chlorination By-Products in Surface Water Treatment Process”. Desalination 151 (1): 1–9. DOI: 10.1016/S0011-9164(02)00967-0
Lapointe, M., J. M. Farner, L. M. Hernandez, y N. Tufenkji. 2020. “Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation”. Environmental Science and Technology 54 (14): 8719–27. DOI: 10.1021/acs.est.0c00712
Lawrie, K., A. Mills, M. Figueredo-Fernández, S. Gutiérrez-Alfaro, M. Manzano, y M. Saladin. 2015. “UV Dosimetry for Solar Water Disinfection (SODIS) Carried out in Different Plastic Bottles and Bags”. Sensors and Actuators, B: Chemical 208: 608–15. DOI: 10.1016/j.snb.2014.11.031
Laxma Reddy, P. V., B. Kavitha, P. A. Kumar Reddy, y K. H. Kim. 2017. “TiO2-Based Photocatalytic Disinfection of Microbes in Aqueous Media: A Review”. Environmental Research 154 (1): 296–303. DOI: 10.1016/j.envres.2017.01.018
Lee, K. M., C. Wei Lai, K. Sing Ngai, y J. Ching Juan. 2016. “Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review”. Water Research 88: 428–48. DOI: 10.1016/j.watres.2015.09.045
Lee, S. Y., y S. J. Park. 2013. “TiO2 Photocatalyst for Water Treatment Applications”. Journal of Industrial and Engineering Chemistry 19 (6): 1761–69. DOI: 10.1016/j.jiec.2013.07.012
Levchuk, I. , J. Moreno-Andrés, J. J. Rueda-márquez, P. Dzik, M. Ángel, M. Sillanpää, M. A. Manzano, y R. Vahala. 2019. “Solar Photocatalytic Disinfection Using Ink-Jet Printed Composite TiO2/SiO2 Thin Fi Lms on Fl Exible Substrate: Applicability to Drinking and Marine Water”. Solar Energy 191: 518–29. DOI: 10.1016/j.solener.2019.09.038
Li, X., y H. Y. Yang. 2021. “A Global Challenge: Clean Drinking Water”. Global Challenges 5 (1): 2000125. DOI: 10.1002/gch2.202000125
Long, Y., X. You, Y. Chen, H. Hong, B. Qiang Liao, y H. Lin. 2020. “Filtration Behaviors and Fouling Mechanisms of Ultrafiltration Process with Polyacrylamide Flocculation for Water Treatment”. Science of the Total Environment 703: 135540. DOI: 10.1016/j.scitotenv.2019.135540
Long, Z., Q. Li, T. Wei, G. Zhang, y Z. Ren. 2020. “Historical Development and Prospects of Photocatalysts for Pollutant Removal in Water”. Journal of Hazardous Materials 395: 122599. DOI: 10.1016/j.jhazmat.2020.122599
Malato, S., P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, y W. Gernjak. 2009. “Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends”. Catalysis Today 147 (1): 1–59. DOI: 10.1016/j.cattod.2009.06.018
Malato, S., J. Blanco, D. C. Alarcón, M. I. Maldonado, P. Fernández-Ibáñez, y W. Gernjak. 2007. “Photocatalytic Decontamination and Disinfection of Water with Solar Collectors”. Catalysis Today 122 (1–2): 137–49. DOI: 10.1016/j.cattod.2007.01.034
Manassero, A., M. L. Satuf, y O. M. Alfano. 2017. “Photocatalytic Reactors with Suspended and Immobilized TiO2: Comparative Efficiency Evaluation”. Chemical Engineering Journal 326: 29–36. DOI: 10.1016/j.cej.2017.05.087
Mansor, N. A., y K. S. Tay. 2020. “Potential Toxic Effects of Chlorination and UV/Chlorination in the Treatment of Hydrochlorothiazide in the Water”. Science of the Total Environment 714: 136745. DOI: 10.1016/j.scitotenv.2020.136745
Martin, F. C. 2001. “Water: Importance To Life”. Biochemistry and Molecular Biology Education 29 (1): 54–59. DOI: 10.1111/j.1539-3429.2001.tb00070.x
Martínez, N. N., J. M. Ribera, S. Hausmann-Muela, M. Cevallos, S. M. Hartinger, A. Christen, y D. Mäusezahl. 2020. “The Meanings of Water: Socio-Cultural Perceptions of Solar Disinfected (SODIS) Drinking Water in Bolivia and Implications for Its Uptake”. Water (Switzerland) 12 (2): 12020442. DOI: 10.3390/w12020442
Masunga, N., O. Kelebogile Mmelesi, K. K. Kefeni, y B. B. Mamba. 2019. “Recent Advances in Copper Ferrite Nanoparticles and Nanocomposites Synthesis, Magnetic Properties and Application in Water Treatment: Review”. Journal of Environmental Chemical Engineering 7 (3): 103179. DOI: 10.1016/j.jece.2019.103179
McGuigan, K. G., R. M. Conroy, H. J. Mosler, M. du Preez, E. Ubomba-Jaswa, y P. Fernandez-Ibañez. 2012. “Solar Water Disinfection (SODIS): A Review from Bench-Top to Roof-Top”. Journal of Hazardous Materials 235–236: 29–46. DOI: 10.1016/j.jhazmat.2012.07.053
McLoughlin, O. A., P. Fernández Ibáñez, W. Gernjak, S. Malato Rodriguez, y L. W. Gill. 2004. “Photocatalytic Disinfection of Water Using Low Cost Compound Parabolic Collectors”. Solar Energy 77 (5): 625–33. DOI: 10.1016/j.solener.2004.05.017
Medeiros, R. C., N. de, B. L.S. Freitas, L. P. Sabogal-Paz, M. T. Hoffmann, J. Davis, P. Fernandez-Ibañez, y J. A. Byrne. 2020. “Drinking Water Treatment by Multistage Filtration on a Household Scale: Efficiency and Challenges”. Water Research 178: 115816. DOI: 10.1016/j.watres.2020.115816
Meierhofer, R., y G. Landolt. 2009. “Factors Supporting the Sustained Use of Solar Water Disinfection - Experiences from a Global Promotion and Dissemination Programme”. Desalination 248 (1–3): 144–51. DOI: 10.1016/j.desal.2008.05.050
Meng, F., Y. Liu, J. Wang, X. Tan, H. Sun, S. Liu, y S. Wang. 2018. “Temperature Dependent Photocatalysis of G-C3N4, TiO2 and ZnO: Differences in Photoactive Mechanism”. Journal of Colloid and Interface Science 532: 321–30. DOI: 10.1016/j.jcis.2018.07.131
Mortazavi, S. M., y A. Maleki. 2020. “A Review of Solar Compound Parabolic Collectors in Water Desalination Systems”. International Journal of Modelling and Simulation 40 (5): 339–54. DOI: 10.1080/02286203.2019.1626539
Nguyen, D. N., H. M. Bui, y H. Q. Nguyen. 2020. Heterogeneous Photocatalysis for the Removal of Pharmaceutical Compounds. Current Developments in Biotechnology and Bioengineering. Lomdres (Reino Unido): Elsevier B.V. DOI: 10.1016/b978-0-12-819594-9.00007-3
Pérez, M., F. Torrades, X. Domènech, y J. Peral. 2002. “Fenton and Photo-Fenton Oxidation of Textile Effluents”. Water Research 36 (11): 2703–10. DOI: 10.1016/S0043-1354(01)00506-1
Petrovic, M., A. Ginebreda, V. Acuña, R. J. Batalla, A. Elosegi, H. Guasch, M. L. de Alda, R. Marcpé, I. Muñoz, A. Navarro-Ortega, E. Navarro, D. Vericat, S. Sabater, D. Barceló. 2011. “Combined Scenarios of Chemical and Ecological Quality under Water Scarcity in Mediterranean Rivers”. TrAC - Trends in Analytical Chemistry 30 (8): 1269–78. DOI: 10.1016/j.trac.2011.04.012
Pichel, N., M. Vivar, y M. Fuentes. 2019. “The Problem of Drinking Water Access: A Review of Disinfection Technologies with an Emphasis on Solar Treatment Methods”. Chemosphere 218 (3): 1014-1030. DOI: 10.1016/j.chemosphere.2018.11.205
Polo-López, M. I., A. Martínez-García, M. J. Abeledo-Lameiro, H. H. Gómez-Couso, E. E. Ares-Mazás, A. Reboredo-Fernández, T. D. Morse, L. Buck, K. Lungu, K. G. McHuigan, y P. Fernández-Ibáñez. 2019. “Microbiological Evaluation of 5 L- And 20 L-Transparent Polypropylene Buckets for Solar Water Disinfection (SODIS)”. Molecules 24 (11): 24112193. DOI: 10.3390/molecules24112193
Porley, V., E. Chatzisymeon, B. C. Meikap, S. Ghosal, y N. Robertson. 2020. “Field Testing of Low-Cost Titania-Based Photocatalysts for Enhanced Solar Disinfection (SODIS) in Rural India”. Environmental Science: Water Research and Technology 6 (3): 809–16. DOI: 10.1039/c9ew01023h
Qian, Y., Y. Hu, Y. Chen, D. An, P. Westerhoff, D. Hanigan, y W. Chu. 2020. “Haloacetonitriles and Haloacetamides Precursors in Filter Backwash and Sedimentation Sludge Water during Drinking Water Treatment”. Water Research 186: 116346. DOI: 10.1016/j.watres.2020.116346
Rogers, E., H. Tappis, S. Doocy, K. Martínez, N. Villeminot, A. Suk, D. Kumar, S. Pietzsch, y C. Puett. 2019. “Costs and Cost-Effectiveness of Three Point-of-Use Water Treatment Technologies Added to Community-Based Treatment of Severe Acute Malnutrition in Sindh Province, Pakistan”. Global Health Action 12 (1): 1568827. DOI: 10.1080/16549716.2019.15688277
Roshith, M., A. Pathak, A. K. Nanda Kumar, G. Anantharaj, V. Saranyan, S. Ramasubramanian, T. G. Satheesh Babu, y D. V. Ravi Kumar. 2021. “Continuous Flow Solar Photocatalytic Disinfection of E. Coli Using Red Phosphorus Immobilized Capillaries as Optofluidic Reactors”. Applied Surface Science 540 (2): 148398. DOI: 10.1016/j.apsusc.2020.148398
Schmid, P., M. Kohler, R. Meierhofer, S. Luzi, y M. Wegelin. 2008. “Does the Reuse of PET Bottles during Solar Water Disinfection Pose a Health Risk Due to the Migration of Plasticisers and Other Chemicals into the Water?” Water Research 42 (20): 5054–60. DOI: 10.1016/j.watres.2008.09.025
Serrà, A., L. Philippe, F. Perreault, y S. Garcia-Segura. 2021. “Photocatalytic Treatment of Natural Waters. Reality or Hype? The Case of Cyanotoxins Remediation”. Water Research 188: 116543. DOI: 10.1016/j.watres.2020.116543
Sreeja, S., y V. Shetty. 2017. “Photocatalytic Water Disinfection under Solar Irradiation by Ag@TiO2 Core-Shell Structured Nanoparticles”. Solar Energy 157: 236–43. DOI: 10.1016/j.solener.2017.07.057
Strauss, A., B. Reyneke, M. Waso, y W. Khan. 2018. “Compound Parabolic Collector Solar Disinfection System for the Treatment of Harvested Rainwater”. Environmental Science: Water Research and Technology 4 (7): 976–91. DOI: 10.1039/c8ew00152a
Su, Z., S. Gu, y K. Vafai. 2017. “Modeling and Simulation of Ray Tracing for Compound Parabolic Thermal Solar Collector”. International Communications in Heat and Mass Transfer 87: 169–74. DOI: 10.1016/j.icheatmasstransfer.2017.06.021
Sun, J., X. Wang, J. Sun, R. Sun, S. Sun, y L. Qiao. 2006. “Photocatalytic Degradation and Kinetics of Orange G Using Nano-Sized Sn(IV)/TiO2/AC Photocatalyst”. Journal of Molecular Catalysis A: Chemical 260 (1–2): 241–46. DOI: 10.1016/j.molcata.2006.07.033
Tanveer, M., y G. T. Guyer. 2013. “Solar Assisted Photo Degradation of Wastewater by Compound Parabolic Collectors: Review of Design and Operational Parameters”. Renewable and Sustainable Energy Reviews 24: 534–43. DOI: 10.1016/j.rser.2013.03.053
Tian, M., Y. Su, H. Zheng, G. Pei, y G. Li. 2018. “A Review on the Recent Research Progress in the Compound Parabolic Concentrator (CPC) for Solar Energy Applications”. Renewable and Sustainable Energy Reviews 82: 1272–96. DOI: 10.1016/j.rser.2017.09.050
Ubomba-Jaswa, E., P. Fernández-Ibáñez, C. Navntoft, M. I. Polo-López, y K. G. McGuigana. 2010. “Investigating the Microbial Inactivation Efficiency of a 25 L Batch Solar Disinfection (SODIS) Reactor Enhanced with a Compound Parabolic Collector (CPC) for Household Use”. Journal of Chemical Technology and Biotechnology 85 (8): 1028–37. DOI: 10.1002/jctb.2398
Vorontsov, A. V. 2019. “Advancing Fenton and Photo-Fenton Water Treatment through the Catalyst Design”. Journal of Hazardous Materials, 103–12. DOI: 10.1016/j.jhazmat.2018.04.033
Wang, W. Y., y Y. Ku. 2007. “Effect of Solution PH on the Adsorption and Photocatalytic Reaction Behaviors of Dyes Using TiO2 and Nafion-Coated TiO2”. Colloids and Surfaces A: Physicochemical and Engineering Aspects 302 (1–3): 261–68. DOI: 10.1016/j.colsurfa.2007.02.037
Westall, F., y A. Brack. 2018. “The Importance of Water for Life”. Space Science Reviews 214 (2): 1–23. DOI: 10.1007/s11214-018-0476-7
Xing, Z., J. Zhang, J. Cui, J. Yin, T. Zhao, J. Kuang, Z. Xiu, N. Wan, y W. Zhou. 2018. “Recent Advances in Floating TiO2-Based Photocatalysts for Environmental Application.” Applied Catalysis B: Environmental. 225 (6): 452-467. DOI: 10.1016/j.apcatb.2017.12.005
Xu, D., y M. Qu. 2013. “Compound Parabolic Concentrators in Solar Thermal Applications: A Review”. ASME 2013 7th Int. Conf. on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, ES 2013, 1–10. DOI: 10.1115/ES2013-18409
Yuan, G., Z. Wang, H. Li, y X. Li. 2011. “Experimental Study of a Solar Desalination System Based on Humidification-Dehumidification Process”. Desalination 277 (1–3): 92–98. DOI: 10.1016/j.desal.2011.04.002
Zhang, T., G. Pan, y Q. Zhou. 2016. “Temperature Effect on Photolysis Decomposing of Perfluorooctanoic Acid”. Journal of Environmental Sciences (China) 42: 126–33. DOI: 10.1016/j.jes.2015.05.008
Zhang, Y., M. Sivakumar, S. Yang, K. Enever, y M. Ramezanianpour. 2018. “Application of Solar Energy in Water Treatment Processes: A Review”. Desalination 428 (11): 116–45. DOI: 10.1016/j.desal.2017.11.020
Zhang, Y., y M. Sillanpää. 2020. “Modification of Photocatalyst with Enhanced Photocatalytic Activity for Water Treatment”. En Advanced Water Treatment: Advanced Oxidation Processes. Sillanpää M. (ed). Amsterdam: Elsevier. DOI: 10.1016/B978-0-12-819225-2.00005-3
Publicado
Cómo citar
Número
Sección
Licencia
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons. Por tanto:
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la lamisma licencia del original.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional