Pirólisis: una revisión de conceptos y aplicaciones en la gestión de residuos sólidos

Autores/as

DOI:

https://doi.org/10.25127/aps.20221.854

Palabras clave:

biocarbón, pirolisis, residuos sólidos orgánicos municipales, aplicaciones de biocarbón

Resumen

La gestión de residuos sólidos es un desafío ambiental a nivel mundial debido a que generan contaminación de aguas y suelos, así como emisiones de gas de efecto invernadero, lo cual se incrementará con el crecimiento de las ciudades y población. Es por ello, que el tratamiento de estos, especialmente la fracción orgánica, mediante el proceso de pirólisis se presenta como una alternativa sostenible con beneficios significativos como la obtención de subproductos, como el biocarbón, que tiene diversos campos de aplicación en aguas, suelos y cambio climático. En esta revisión, se explora en la primera sección los procesos de pirólisis, materia prima y subproductos. En la siguiente sección se analizan las aplicaciones del biocarbón, como subproducto, en el tratamiento de agua, suelo y reducción de gases de efecto invernadero. Finalmente, realiza una análisis técnico, económico y ambiental del proceso pirolítico. Por ende, la gestión de la fracción orgánica de residuos sólidos municipales a través de pirólisis, es un proceso sostenible, rentable y replicable.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Afzal, M. Z., X. F. Sun, J. Liu, C. Song, S. G. Wan y , A. Javed. 2018. “Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads”. Science of the Total Environment 639 (1): 560-569. DOI: 10.1016/j.scitotenv.2018.05.129

Amin, F. R., Y. Huang, Y. He, R. Zhang, G. Liu y C. Chen. 2016. “Biochar applications and modern techniques for characterization”. Clean Technologies and Environmental Policy 18 (2016): 1457-1473. 10.1016/j.chemosphere.2013.10.071

Ahmad, J., F. Patuzzi, U. Rashid, M. Shahabz, C. Ngamcharussrivichai y M. Baratieri. 2021. “Exploring untapped effect of process conditions on biochar characteristics and applications”. Environmental Technology & Innovation 21 (1): 101-310. DOI: 10.1016/j.eti.2020.101310

Alam, O. y X. Qiao. 2020. “An in-depth review on municipal solid waste management, treatment and disposal in Bangladesh”. Sustainable Cities and Society 52 (2): 101-775. DOI: 10.1016/j.scs.2019.101775

Alonos- Gómez, L., A. Cruz, D. Jiménez, Á. Ocampo y S. Parra. 2016.” Biochar como enmienda en un oxisol y su efecto en el crecimiento de maíz”. Revista UDCA Actualidad & Divulgación Científica 19 (2): 341-349.

Amoah-Antwi, C.J., J. Kwiatkowska, SF. Thornton, O. Fenton, G. Malina y E. Szara. 2020. “Restoration of soil quality using biochar and brown coal waste: A review”. Science of the Total Environment 722 (1): 137-852. DOI: 10.1016/j.scitotenv.2020.137852

Asadullah, M., 2014 “Biomass gasification gas cleaning for downstream applications: Acomparative critical review”. Renewable and Sustainable Energy Reviews 40 (1):118–132. DOI: 10.1016/j.rser.2014.07.132

Asadullah, M., S.I. Ito, K. Kunimori, M. Yamada y K. Tomishige,. 2020. “Biomass Gasification to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-Bed Reactor”. Journal of Catalysis 208 (2): 255–259.DOI: 10.1006/jcat.2002.3575

Aslam Z., M. Khalid and M. Aon. 2014. “Impact of Biochar on Soil Physical Properties”. Scholarly Journal of Agricultural Science 4 (5): 280-284.

Babu, R., P. Veramendi y E.R. Rene. 2021. “Strategies for resource recovery from the organic fraction of municipal solid waste”. Case Studies in Chemical and Environmental Engineering 3 (1): 100098. DOI: 10.1016/j.cscee.2021.100098

Barrow, C.J. 2012. “Biochar: Potential for countering land degradation and for improving agriculture”. Applied Geography 34 (2): 21–28. DOI: 10.1016/j.apgeog.2011.09.008

Ben Hassen-Trabelsi, A., T. Kraiem, S. Naoui y H. Belayouni.“Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char”. Waste Management, 34.1(2014):210–218.

Bergman, P. C. A., A. Boersma, R. Zwart y J.H.A. Kiel. 2005. “Torrefaction for biomass co-firing in existing coal-fired power stations”. In Energy research Centre of the Netherlands 1 (1): 17-21.

Biederman, L.A. y W.S. Harpole. 2006. “Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis”. GCB Bioenergy 5(1): 202-214. DOI: 10.1111/gcbb.12037

Brick, S. 2010. “Biochar: Assessing the promise and risks to guide U.S. policy”. Natural Resources Defense Council. USA. 1(1):1-24.

Cantrell, K. B., P.G. Hunt, M. Uchimiya, J.M. Novak y K.S. Ro. 2012. “Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar”. Bioresource Technology 107(1): 419–428. DOI: 10.1016/j.biortech.2011.11.084

Ccahua, K. 2018. “Aplicación de Biochar en Mezclas y Sustratos”. Readlyc.org 1 (1): 1-12. DOI: 10.22517/23447214.17691

Chandrappa, R. y D.B. Das. 2012. Solid waste management: Principles and practice. Springer Science & Business Media. 11(6): 393-411. DOI: 10.1007/978-3-642-28681-0

Chen, D., L. Yin, H. Wang and P. He. 2014. “Pyrolysis technologies for municipal solid waste: A review”. Waste Management 34 (12): 2466–2486. DOI: 10.1016/j.wasman.2014.08.004

Dehkhoda, A.M., A.H. West, y N. Ellis. 2010. “Biochar based solid acid catalyst for biodiesel production”. Applied Catalysis. A General 382 (2):197–204. DOI: 10.1016/j.apcata.2010.04.051

Dunnigan, L., B. J. Morton, P. J. Ashman, X. Zhang y C. W. Kwong, 2018. “Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes”. Waste Management 77 (1): 59-66.DOI: 10.1016/j.wasman.2018.05.004

Ennis C., A. G. Evans, M. Islam, T. K. Ralebitso and E. Senior.2012. “Biochar: Carbon Sequestration, Land Remediation, and Impacts on Soil Microbiology”. Critical Reviews in Environmental Science and Technology 42 (22): 2311-2364.DOI: 10.1080/10643389.2011.574115

Escalante, A., G. Pérez, C. Hidalgo, J.López, J. Campo, E. Valtierra y J. D. Etchevers 2016. “Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo”. Terra Latinoamericana 34 (3): 367-382.

FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) .2015. Los suelos sanos son la base para la producción de alimentos saludables. https://www.fao.org/soils-2015/news/news-detail/es/c/277721/ (Consultada el 24 de noviembre 2021)

Fiallos-Ortega, L. R., L.G. Flores, N. Duchi, C.I. Flores, A. Baño y L. Estrada. 2015.“Restauración ecológica del suelo aplicando biochar (carbón vegetal), y su efecto en la producción de Medicago sativa”. Ciencia y Agricultura 12 (2): 13-20. DOI: 10.19053/01228420.4349

Funke, A. y F. Ziegler. 2010. “Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering”. Biofuels, Bioproducts and Biorefining, 4 (2): 160–177. DOI: 10.1002/bbb.198

García, A. M., I. Santé, X. Loureiro and D. Miranda. 2020. “Green infrastructure spatial planning considering ecosystem services assessment and trade-off analysis. Application at landscape scale in Galicia region (NW Spain)”. Ecosystem Services 43 (1): 101115. DOI: 10.1016/j.ecoser.2020.101115

Gautam, R. K., M. Goswami, R.K. Mishra, P. Chaturvedi, M.K. Awashthi, R.S. Singh, B.S. Giri y A. Pandey. 2021. “Biochar for remediation of agrochemicals and synthetic organic dyes from environmental samples: A review”. Chemosphere 272 (1): 129917. DOI: 10.1016/j.chemosphere.2021.129917

González, J. F., S. Román, J. M. Encinar y G. Martínez. 2009.“Pyrolysis of various biomass residues and char utilization for the production of activated carbons”. Journal of Analytical and Applied Pyrolysis 85 (1-2):134–141. DOI: 10.1016/j.jaap.2008.11.035

Ghodake, G. S., S. K.Shinde, A.A. Kadam, R.C. Saratale, G.D. Saratale, M. Kumar, R.R. Palem, H.A. AL-Shwaiman, A.M. Elgorban, A. Syed y D.Y. Kim. 2021. “Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy”. Journal of Cleaner Production 297: 126645. DOI: 10.1016/j.jclepro.2021.126645

Grycová, B., I. Koutník. y A. Pryszcz. 2016. “Pyrolysis process for the treatment of food waste”. Bioresource Technology 218: 1203–1207.DOI: 10.1016/j.biortech.2016.07.064

Gu, X., Y. Wang, C. Lai, J. Qiu, S. Li, Y. Hou, W. Martens, N. Mahmood y S. Zhang. 2015.“Microporous bamboo biochar for lithium-sulfur batteries”. Nano Research, 8(1):129–139.

Han, J., X. Wang, J. Yue, S. Gao y G. Xu. 2014. “Catalytic upgrading of coal pyrolysis tar overchar-based catalysts”. Fuel Processing Technolog, 122: 98–106. DOI: 10.1016/j.fuproc.2014.01.033

Hasan, M. M., M.G. Rasul, M.M.K. Khan, N. Ashwath y M.I. Jahirul. 2021.“Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments”. Renewable and Sustainable Energy Reviews 145: 111073. DOI: 10.1016/j.rser.2021.111073

Huggins, T., H. Wang, J. Kearns y P. Jenkins. 2014. “Ren.Biochar as a sustainable electrode material for electricity production in microbial fuel cells”. Bioresource Technology 157(1):114–119. DOI: tps://doi.org/10.1016/j.biortech.2014.01.058

Huggins, T.M., J.J. Pietron, H. Wang, Z.J. Ren y J.C. Biffinger. 2015. “Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells”. Bioresource Technology, 195(1): 147–153. DOI: 10.1016/j.biortech.2015.06.012

Hungria, M., M. Nogueira y R. Araujo. 2016. “Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics”. Agriculture Ecosystems & Environment 221:125-131. DOI: 10.1016/j.agee.2016.01.024

Ippolito, J.A., M.E. Stromberger, R.D. Lentz y R.S. Dungan.2016. “Hardwood biochar and manure co-application to a calcareous soil”. Chemosphere 142 (2): 84–91.DOI: 10.1016/j.chemosphere.2015.05.039

Jafri, N., W.Y. Wong, V. Doshi, L.W. Yoon y K.H. Cheah. 2018.“A review on production and characterization of biochars for application in direct carbon fuel cells”. Process Safety and Environmental Protection 118 (1): 152–166. DOI: 10.1016/j.psep.2018.06.036

Jayawardhana, Y., S.R.Gunatilake, K. Mahatantila, M.P. Ginige y M. Vithanage. 2019. “Sorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compounds”. Journal of Environmental Management 238 (1): 323–330.DOI: 10.1016/j.jenvman.2019.02.097

Jayawardhana, Y., S.S. Mayakaduwa, P. Kumarathilaka, S. Gamage, y M.Vithanage. “Municipal solid waste-derived biochar for the removal of benzene from landfill leachate”. Environmental Geochemistry and Health 41 (4): 1739–1753.

Kataki, R., N.J. Bordoloi, R. Saikia, D. Sut, R. Narzari, L. Gogoi y N. Bhuyan. 2018.“Waste Valorization to Fuel and Chemicals Through Pyrolysis: Technology, Feedstock, Products and Economic Analysis”. Energy, Environment, and Sustainability 1(3): 477–514.

Kaza, S., L. Yao, P. Bhada y F. Woerden. 2018. “What a waste 2.0: una instantánea global de la gestión de residuos sólidos hasta 2050”. Publicaciones del Banco Mundial 6 (2): 219-305. DOI: 10.1596/978-1-4648-1329-0

Klinghoffer, N. B., M. J. Castaldi y A. Nzihou. 2015. “Influence of char composition and inorganics on catalytic activity of char from biomass gasification”. Fuel, 157 (2):37–47. DOI: 10.1016/j.fuel.2015.04.036

Ro, K. S., I.M. Lima, G. B. Reddy y M. A Jackson.2015. “Removing Gaseous NH3 Using Biochar as an Adsorbent”. Agriculture 5 (4): 991–1002. DOI: 10.3390/agriculture5040991

Laird, D. A., R. C. Brown J. E. Amonette and J. Lehmann. 2009. “Review of the pyrolysis platform for coproducing bio-oil and biochar”. Biofuels, Bioproducts and Biorefining, 3 (5):547-562. DOI: 10.1002/bbb.169

Lal, R. 2004. “Soil carbon sequestration impact on global climate change and good security”. Science, 304 (5): 1623-1627. DOI: DOI: 10.1126/science.1097396

Lee, J., A.K. Sarmah y E. E. Kwon. 2018.“Production and formation of biochar”. Biochar from Biomass and Waste: Fundamentals and Applications 1 (1) :3–18. DOI: ttps://doi.org/10.1016/B978-0-12-811729-3.00001-7

Lee, J. W., B. Hawkins, D.M. Day y D.C. Reicosky. 2010. “Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration”. Energy & Environmental Science 3 (11):1695-1705. DOI: 10.1039/C004561F

Lehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W. Hockaday y D. Crowley. 2011. “Biochar effects on soil biota – A review”. Soil Biology and Biochemistry 43 (9):1812-1836. DOI: 10.1016/j.soilbio.2011.04.022

Li, A. M., X. D. Li, S.Q. Li, Y. Ren, Y. Chi, J.H. Yan y K.F. Cen. 1999. “Pyrolysis of solid waste in a rotary kiln: Influence of final pyrolysis temperature on the pyrolysis products”. Journal of Analytical and Applied Pyrolysis 50 (2):149–162. DOI: 10.1016/S0165-2370(99)00025-X

Li, L., Yao., You, S., Wang, C., Chong y X. Wang. 2019. “Optimal design of negative emission hybrid renewable energy systems with biochar production”. Applied Energy, 243 (2): 233-249. DOI: 10.1016/j.apenergy.2019.03.183

Li, S., A. Sanna y J.M. Andresen. 2011. “Influence of temperature on pyrolysis of recycled organic matter from municipal solid waste using an activated olivine fluidized bed”. Fuel Processing Technology 92 (9): 1776–1782. DOI: 10.1016/j.fuproc.2011.04.026

Li, Z., Q. Tang, T., Katsumi, X. Tang, T. Inui, S. Imaizumi. 2010. “Leaf char: An alternative adsorbent for Cr (III)”. Desalination 264 (1-2):70–77. DOI: 10.1016/j.desal.2010.07.006

Liu, H., X. Ma, L. Li, Z.F. Hu, P. Guo y Y.Jiang. 2014. “The catalytic pyrolysis of food waste by microwave heating”. Bioresource Technology 166 (3):45–50. DOI: 10.1016/j.biortech.2014.05.020

Lu, J. S., Y. Chang, C.S. Poon, D. J. Lee. 2020. “Slow pyrolysis of municipal solid waste (MSW): A review”. Bioresource Technology, 312 (2020): 123615.DOI: 10.1016/j.biortech.2020.123615

Mani, S., J.R. y Kastner, A. Juneja. 2013.“Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Processing Technology 114: 118–125.DOI: 10.1016/j.fuproc.2013.03.015

Masiello CA and E.R.M. Druffel. 1998. “Black carbon in deep-Sea sediments”. Science. 280 (2):1911-3. DOI: 10.1126/ciencia.280.5371.1911

Mohan, D., S. Rajput, V.K. Singh, P.H, Steele y C.U. Pittman. 2011. “Modeling and evaluation of chromium remediation from water using low-cost bio-char, a green adsorbent”. Journal of Hazardous Material, 188 (1-3): 319–333. DOI: 10.1016/j.jhazmat.2011.01.127

Nunoura, T., S.R. Wade, J.P. Bourke y M.J. Antal.2005. “Studies of the Flash Carbonization Process. 1. Propagation of the Flaming Pyrolysis Reaction and Performance of a Catalytic Afterburner”. Industrial and Engineering Chemistry Research, 45 (2):585–599. DOI: 10.1021/ie050854y

Opatokun, S. A., T. Kan, A. Al Shoaibi, C.Srinivasakannan y V. Strezov. 2016. “Characterization of Food Waste and Its Digestate as Feedstock for Thermochemical Processing”. Energy and Fuels, 30,3(2016):1589–1597.DOI: 10.1021/acs.energyfuels.5b02183

Opatokun, S. A., V. Strezov y T. Kan. 2015. “Product based evaluation of pyrolysis of food waste and its digestate”. Energy 92:349–354. DOI: 10.1016/j.energy.2015.02.098

Pariona-Palomino, J., W. Matos y E. Huillca. 2020. “Biochar como tecnología de emisión negativa frente al cambio climático”. South Sustainability, 1 (2): 1-8. DOI: 10.21142/SS-0102-2020-014

Park, C., N. Lee, J. Kim y J. Lee. “Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions”. Environmental Pollution 270 (1):116045. DOI: 10.1016/j.envpol.2020.116045

Penido, E. S., G.C. Martins, T. B. M. Mendes, L. C. A.,Melo, I. do Rosário Guimarães y L. R. G. Guilherme.2019. “Combining biochar and sewage sludge for immobilization of heavy metals in mining soils”. Ecotoxicology and Environmental Safety, 172 (1): 326–333. DOI: 10.1016/j.ecoenv.2019.01.110

Renner, R. 2007. “Rethinking biochar”. Environment Science and Technology 41 (1): 5932-5933.

Sakhiya, A. K., A. Anand y P. Kaushal.2020. “Production, activation, and applications of biochar in recent times”. Biochar 2 (3): 253-285.

Shah, A. V., V.K. Srivastava, S.S. Mohanty y S. Varjani. 2021. “Municipal solid waste as a sustainable resource for energy production: State-of-the-art review”. Journal of Environmental Chemical Engineering 9 (4): 105717. DOI: 10.1016/j.jece.2021.105717

Schmidt, M.W.I y A.G. Noack. 2000. “Black Carbon in Soils and Sediments: Analysis, Distribution, Implications, and Current Challenges”. Global Biogeochemical Cycles, 14 (3):777-793. DOI: 10.1029/1999GB001208

Serio, M., E. Kroo, E. Florczak, M. Wójtowicz, K. Wignarajah, J. Hogan y J. Fisher.2008. “Pyrolysis of mixed solid food, paper, and packaging wastes”. SAE Technical Papers, 724 (2): 1-8.

Smith, P. 2016. “Soil carbon sequestration and biochar as negative emission technologies”. Global Change Biology 22 (3): 1315-1324. DOI: 10.1111/gcb.13178

Sipra, A. T., N. Gao y H. Sarwar. 2018. “Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts”. Fuel Processing Technology 175 :131–147.DOI: 10.1016/j.fuproc.2018.02.012

Sohi, S.P., E. Krull, E. Lopez y R. Bol. 2010. “Chapter 2 - A Review of Biochar and Its Use and Function in Soil”. Advances in Agronomy. 105 (1): 47–82. 10.1016/S0065-2113(10)05002-9.

Tang, Y., M.S. Alam, K.O. Konhauser, D.S. Alessi, S. Xu, W.J. Tian y Y. Liu. 2019. “Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater”. Journal of Cleaner Production 209: 927–936. 10.1016/j.jclepro.2018.10.268

Trupiano, D., C. Cocozza, S. Baronti, C. Amendola, F. P. Vaccari, G. Lustrato, S. Di Lonardo, F. Fantasma, R. Tognetti y G. S. Scippa. 2017. “The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance”. International. Journal of Agronomy 2017 (1):1-12. 10.1155/2017/3158207

Vu, N.-T., T.H. Ngo, T.T. Nguyen y K.U. Do. 2021. “Performances of coffee husk biochar addition in a lab-scale SBR system for treating low carbon/nitrogen ratio wastewater”. Biomass Conversion and Biorefinery, 1-10.

Wang B., B. Gao y J. Fang. 2018. “Recent advances in engineered biochar productions and applications”. Critical Reviews in Environmental Science and Technology 47 (22): 2158 – 2207 DOI: 10.1080/10643389.2017.1418580

Wang, X., J. Ming, C.M. Chen, B.A. Yoza, Q.W. Li, J.H. Liang, G.M. Gadd y Q. H. Wang. 2020 “Rapid aerobic granulation using biochar for the treatment of petroleum refinery wastewater”. Petroleum Science 17 (5):1411–1421.

Wainaina, S., M.K. Awasthi, S. Sarsaiya, H. Chen, E. Singh, A. Kumar, B. Ravindran, S.K. Awasthi, T. Liu, Y. Duan, S. Kumar, Z. Zhang y M.J. Taherzadeh.2020. “Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies”. Bioresource Technology 301: 122778. DOI: 10.1016/j.biortech.2020.122778

Woolf, D., J.E. Amonette, F.A. Street-Perrott, J. Lehmann y S. Joseph. 2021. “Sustainable biochar to mitigate global climate change”. Nature Communications 1 (1): 1-9.

Xu, F., X. Ming, R. Jia, M. Zhao, B. Wang, Y. Qiao y Y. Tian.2020. “Effects of operating parameters on products yield and volatiles composition during fast pyrolysis of food waste in the presence of hydrogen”. Fuel Processing Technology 210 (2): 106558. DOI: 10.1016/j.fuproc.2020.106558

Yaashikaa, P. R., P.S. Kumar, S. Varjani y A. Saravanan. 2020. “A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy”. Biotechnology Reports 28: e00570. DOI: 10.1016/j.btre. 2020.e00570

Yang, Y., S. Heaven, N. Venetsaneas C.J. Banks y A.V. Bridgwater.2018. “Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion”. Applied Energy, 213 (3), 158–168. DOI: 10.1016/j.apenergy.2018.01.018

Yang, Q., O. Mašek, L. Zhao, H. Nan, S. Yu, J. Yin y X. Cao. 2021. “Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation”. Applied Energy 282 (2): 116275. DOI: 10.1016/j.apenergy.2020.116275

Yang, X., A.D. Igalavithana, S.E. Oh, H. Nam, M. Zhang, C.H. Wang, E.E. Kwon, D.C. Tsang y Y. S Ok. 2018. “Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil”. Science of the Total Environment 640–641 (1):704–713. DOI: 10.1016/j.scitotenv.2018.05.298

Yao, H., J. Lu, J. Wu, Z. Lu, P.C. Wilson y Y. Shen. 2013. “Adsorption of Fluoroquinolone Antibiotics by Wastewater Sludge Biochar: Role of the Sludge Source”. Water, Air, & Soil Pollution 224 (1): 1-9.

Yuan, J.-H., R.K. Xu, N. Wang y J.Y. Li. 2011. “Amendment of Acid Soils with Crop Residues and Biochars”. Pedosphere 21(3):302–308.DOI: 10.1016/S1002-0160(11)60130-6

Yuan, Y., T. Liu, P. Fu, J. Tang y S. Zhou. 2015. “Conversion of sewage sludge into highperformance bifunctional electrode materials for microbial energy harvesting”. Journal of Materials Chemistry A 3 (16): 8475–8482.

Zhang, C., L. Liu, M. Zhao, H. Rong y Y. Xu. 2018. “The environmental characteristics and applications of biochar”. Environmental Science and Pollution Research 25 (22): 21525-21534.

Zhang, H., C. Chen, E. Gray, S. Boyd, H. Yang y D. Zhang. 2016. “Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus”. Geoderma. 276 (3): 1-6. DOI: 10.1016/j.geoderma.2016.04.020

Zhao, L., X. Cao, O. Mašek y A. Zimmerman. 2013. “Heterogeneity of biochar properties as a function of feedstock sources and production temperatures”. Journal of Hazardous Materials 256–257 (1):1–9. DOI: 10.1016/j.jhazmat.2013.04.015

Zheng, H., Z. Wang, X. Deng, S. Herbert y B. Xiang. 2013.“Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil”. Geoderma 206 (1) :32-39 .DOI: 10.1016/j.geoderma.2013.04.018

Zhou, Y., S. Qin, S. Verma, T. Sar, S. Sarsaiya, B. Ravindran, T. Liu, R. Sindhu, A.K. Patel, P. Binod, S. Varjani, R. Rani Singhnia, Z. Zhang y M.K. Awasthi. 2021. “Production and beneficial impact of biochar for environmental application: A comprehensive review”. Bioresource Technology 337 (1): 125451.DOI: 10.1016/j.biortech.2021.125451

Zenero M.D.O., S.V. Novais, B. Balboni, G.F.C. Barrili, F.D. Andreote y C.E.P. Cerri. 2021.“Short-term biochar effects on greenhouse gas emissions and phosphorus availability for maize”. Agrosystems Geosciences and Environment 4 (1) :1–16. DOI: 10.1002/agg2.20142

Descargas

Publicado

2022-07-27

Cómo citar

Vilca, K., Rodríguez, S., Atarama, U., Cueva, C., Concha, W. J., Atausupa, M. A., & Gosgot, W. (2022). Pirólisis: una revisión de conceptos y aplicaciones en la gestión de residuos sólidos. Revista De Investigación De Agroproducción Sustentable, 6(1), 43–56. https://doi.org/10.25127/aps.20221.854

Número

Sección

Manuscritos

Artículos similares

También puede {advancedSearchLink} para este artículo.